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Abstract. Quantum groups are of current interest because of their applications in many 
fields of physics. In the present paper we discuss a q-analogue to the Hamiltonian of 
the nuclear shell model. If q is wrilten as = arp(ir)  where r is a real number in 
lhe interval 0 < r < Zrr,  then for r = 0 we recover lhe ordinary nuclear shell theory 
Hamiltonian where the U ( 3 )  symmetry is broken by the presence of the spin-orbit 
coupling lerm as well as the one depending on Lz.  On the other hand if r is in the 
intelval 0.5 < T 6 2, the levels corresponding to a given number of quanla N almost 
collapse to a single one, thus recovering the U ( 3 )  symmetry. In the conclusion we 
compare this result with other procedures to re-establish the U ( 3 )  symmetry. 

1. Introduction and summary 

Quantum algebras have recently been of great interest in physics. The development 
of the quantum inverse problem method [l] and the study of solutions to the Yang- 
Baxter equation [2] introduced the notions of quantum groups and algebras. 

The growing interest in the quantum groups is related with the similitude of the 
properties of quantum algebras and those of Lie algebras in connection with both the 
representation theory [3] and the possible physical applications. The quantum algebra 
SUq(2),  in particular, has been used for the description of superdeformed bands in 
even-even nuclei [4], for description of rotational molecular spectra [SI, etc. 

Recently Biedenharn [6] and Macfarlane [7] independently introduced a q- 
analogue of the harmonic oscillator and proposed the q-analogue to the Jordan 
Schwinger map. 

Moreover the q-analogue of the standard coherent states, and the q-analogue of 
the Bargmann representation were studied by various authors [8,9]. 

In the present paper we shall extend the idea of quantum groups to the 
Hamiltonian of the nuclear shell model [lo]. The appearance of spin-orbit interaction 
and an Lz terms in the latter destroys the U(3) symmetry of the original harmonic 
oscillator. We shall show that this U(3) symmehy can be recovered in a q-deformed 
version of this Hamiltonian. 

We briefly summarize the procedure followed in this paper. In section 2 we discuss 
the ordinary U ( 3 )  3 O(3) 3 O(2)  chain with spin as applied to the Hamiltonian 
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L = 0.08 
f i  = 0.0 

Figum 1. We show the energy levels of the nuclear shell model Hamiltonian given 
by (2.10). Each level is characterized by the total number of quanta N ,  and the orbital 
and total angular momenta given respectively by and j. Note that the parameters k 
and p are functions of N ,  and show on the right-hand side of the figure. 

of the nuclear shell model and show in figure 1 how the degeneracy associated with 
U(3) is broken. 

In section 3 we introduce the q-deformed operators Gi, ti, f l i  as functions of the 
ordinary creation and annihilation operators vi,&, given in the previous section. 

In section 4 we discuss the chain U,(3) 3 0,(3) 3 0,(2) of q-deformed groups, 
with their generators determined explicitly in terms of G i ,  (;, Rj. 

In section 5 we consider the Casimu operators of V,(3),0,(3), 0,(2) and show 
how they give rise to the corresponding commuting integrals of motion fl, E*,  E,. 

In section 6 we briefly review the q-analogue of total angular momentum j and, 
in particular, its representation for j = 4, ie. for the spin, in terms of ordinary Pauli 
matrices. 

In section 7 we discuss the q-deformation of the Hamiltonian of the nuclear shell 
model and in section 8 its spectra, showing through figures 2 and 3 how the U ( 3 )  
symmetry is recovered for a certain range of the parameter q. 

2. The U ( 3 ) 3  0(3)3 O(2) chain with spin and the Hamiltonian of the nuclear shell 
model 

Let us now consider the ordinary U ( 3 )  algebra with the generators Eij expressed in 
terms of the boson operators vi ,  ti, i = 1,2,3, i.e. 

where vi ,  and N j  satisfy the following commutation relations: 

(2.la) 
(2.lb) 
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Then, we easily obtain 

[Eij ,E,d = Ei$,j -%j6i, (2.3) 

and the total number operator N = NI + N2 + N3 = ql[, + q2Ez + q3€,, is a Cashir 
operator for this algebra, i.e. 

[ N , E i j ]  = 0 i, j = 1,2,3.  (24) 

It is well known that the O(3) algebra is a subalgebra of the U(3) one, and the 
generators of the first one can be defined in the following way: 

(2.5a) 
(2.56) 
( 2 3 )  

and they satisfy the commutation relations 

[ L i , L j ]  = i c i j k L k  (2.6) 

and of course the operator L2 = Lf + L$ + L: is a Casimiu operator. Finally, the 
O(2) algebra is a subalgebra of the O(3) that has the generator L ,  which is also the 
Casimir operator of O(2). 

Now we are going to talk about the nuclear shell mode1 Hamiltonian, which has 
been of great interest in nuclear physics [lo, 111. 

In this model, the nucleons have a common potential of the harmonic oscillator 
type plus a single-particle spin-orbit coupling term and a term depending on Lz, i.e. 

H = q * E  - 2 k L .  S - k p L 2  (2.7) 

where k and fi are parameters taken from the experimental results [lo], L and S are 
respectively the orbital and the spin angular momenta of the nucleon and L2 = L. L. 

As is well known the spin S for the nucleons is given by the Pauli matrices 

s.="-=-( 1 0 1  ) 
s A-(. 1 0 - 1  ') 
s z = " = - (  1 1 0  ) 

2 2 1 0  

y 2 2 1 0  

2 2 0 - 1  
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which satisfy the relations 

A Del Sol Mesa et a1 

[ u ; , ~ . ]  J = 2 ic i jkuk .  (29) 

The total angular momentum is J = Z + S, with the eigenvalues of J z ,  L2, Sz 

Then, the eigenvalues of the nuclear shell model Hamiltonian have the form 
being, respectively, j(j + 1) , e( e + I), i .  

E ( N , e , j )  = N - k { j ( j  t 1) - l ( e +  1) - $} - k /Lf ( l+  1) (2.10) 

where N is the total number of quanta and e and j are the orbital and the total 
angular momentum respectively. 

We can see clearly that the spectrum has lost the symmetry U(3), which 
corresponds to the harmonic oscillator, as the levels with fixed N and e = 
N, N - 2, . . .O or 1 and j = e & 4 are no longer degenerate as seen in figure 1. 

3. The q-operators ?jir &, Nd, in terms of the ordinary creation and annihilation 
operators Q, 6; 

The three-dimensional q-harmonic oscillator can be defined in terms of the q-creation 
operator e;, q-annihilation operator ti = ( q j ) + ,  and the q-number operator fii, 
where (a = 1,2,3), and satisfy the following commutation relations [9]: 

(3 .1~)  

(3.16) 
(3.14 

(3.ld) 

(3.k) 

(3.Y) 

(3.3) 

where q = exp( r )  and r is a real or purely imaginary number. 
The operatols Ri ,  iji and ti act on the q-Hilbert space given by the states [9] 

(3.4) 
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where IO), is the q-boson vacuum defined by 

<;IO), = RilO), = 0 i = 1,2,3 (3.5~)  

and the factorial is 

[nil,! E [ni] , [ni  - 11, .. .[I], ni = 0,1,2,3, .  . . . (3.56) 

The operators act on the basis states in the following manner: 

where n 3 ( n l ,  n2, n3) and e; is a threedimensional vector with vanishing entries 
everywhere except for the i component that has value unity. 

There is a relation between the q-operators Ni, fii, i, and the usual boson 
operators v i ,&  [SI: 

or 

It is easy to show that if we carry out the substitution of the relations (3.8) in the 
commutation relations for the usual boson operators 

[ti, 77il = 1 (3.9) 

we obtain the relations (3.1% 6). 

4. The Uq(3) 3 Oq(3) 3 0,(2) chain in terms of the q-operators Gi,&,  Ni 

4.1. The generators of the U,(3) algebra in t e m  of the q-operators f i i  , ti, f l i  

The U,(3) algebra is defined by the generators Eij ( i , j  = 1,2,3) which can be 
expressed in terms of the q-operators fii , ii, f i i  [9]: 

E , . = i V i  I S  i = l , 2 , 3  (4.1~) 

E+, = fiiiitl i = 1,2 (4.lb) 

EitIi  = ?jit,& i = 1,2 (4.1~) 

E 13 - - q -N2fi l [3  (4.ld) 

E 3 1  = q IQ2- 773'5, - (4.le) 
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Using the relations (3.7) we can express the generators of the U J 3 )  algebra in 
terms of those of the U ( 3 ) ,  i.e. 

E. .  I* = E.. I, = Ni = vi& ( 4 . 2 )  

4.2. The generators of the 0, (3) algebra in terms of ii , ti ,  isi 
Let consider the quantum algebra 0 , ( 3 )  generated by the operators e,, E - ,  Lo, 
where (j,,)t = to, ( t t ) t  = satisfy the commutation relations 

and the 0,(2) algebra has the generator L,. 

and the generators of the O ( 3 )  algebra (L, ,L, ,L_)  [9,13] 
There is a connection between the generators of the algebra Oq(3)(Lt, E , ,  E - )  

[ L  + L,  + 1] , [L  - L"19 ' 1 2  

L ,  = L + (  ( L + L , + l ) ( L - L , )  ) (4.44 

(4.4b) 

L" = L" ( 4 4  

where 

L (L2 + $)1/2 - 1 2 . (4 .44 

Carrying out the substitution of the relations ( 4 4  b, c) in the commutation 
relations for the O ( 3 )  generators 

[L,, L i l  = iL, 
[ L t , L - l =  2L" 

(4.5a) 

(4.56) 
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we obtain the relations (4.3). 

boson operators v i , &  ( i =  1,2,3) 
As is well known, the generators L,, L- , Lo can be expressed in terms of the 

L ,  ( L I  + iL2) = -i{v2E3 - + iv3E1 - iv1€33) 

L-  (Ll - iL2) = -i{q2E3 - v3t2 - iv3E1 + ivlE3} 

Lo L3 = -iIvlEz - v2€d. 

(4.Q) 

(4.66) 

(4.W 

On the other hand we h o w  the relation between the operators v i ,  E , ,  N ,  and 
@,&, 8, (equations 3.8) and the relation of the generators L,, Lo, L- with those 
E,, Lo, E- (equations (4.474)). 

Thus we can express the generators of the 0,(3) algebra ( E , ,  E,, E - )  in terms 
of the p-boson operators &,fj,,&', ( i  = 1,2,3): 

E, = (--i){G2t3G(fl2, N 3 )  - G3&G(f13, Nz) + iG3&G(&, NI) 
- i ~ i t ~ G ( f l 1 ,  iCi,)lf(L,, L )  (4.7~) 

e- = (L,) - t  (4.76) 

Eo = Lo = -i{Gl&G(m1, N 2 )  - rj2t1G(fi2, NI)) (4.74 

where 

G(Nj,Nj) E ( (N, + 1)(Rj))1/Z 

I& + II,[fljl, 
and 

(4.7d) 

(4.7e) 

Note from (4.44 and (2.5) that L and L,  can be expressed in terms of vi, E,. 
As these in turn are functions of fji,&, ni, as seen in (3.8), we can finally obtain 
f(L, L,) of (4.7) in terms of the latter. Thus E, ,  E, are explicit functions of 
G,, t i , f l i .  

5. The Casimir operator of U,@), 0,(3) and O,(Z) algebras and the integrals of 
motion 

In connection with the chain U,(3) 2 0,(3)  3 0,(2) we can find three commuting 
integrals of motion 

@.la) 

(5.lb) 

(5.1~) 
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The total number of quanta operator fl is a Casimir of the Uq(3) algebra, Le. 

[N, Eij] = 0 i , j  = 1,2,3 (5.2) 

and the operators Lz and E o  are Casimirs of the 0,(3) and 0,(2) algebras 
respectively, i.e. 

(5.34 
(5.36) 

All these operators commute each other. We can clearly see that [m, E,] = 0, 
= N from (3.7~) and E ,  = L, which is easy to show because we know that 

from ( 4 4 ,  so then we have 

[m,E"] = [ N , L , ]  =o .  (5.4) 

It is also clear that [E,, zz] = 0 because EZ is a Casimu operator of the 0,(3) 
algebra. 

To prove the relation [N, t2] = 0, it is useful to note that 

where in (5.5) we used the relations (3.7) and (4.4a, b). 

6. The discussion of the spin part and the states for the total angular momentum 

Let us consider now the quantum algebra SUq(2)  generated by the operators 
.ft , ju, f satisfying the relations 

(6 .1~)  

(6.lb) 

The irreducible representations are given by the vectors of the Hilbert space 
I j v ~ ) ~ ,  where j may take the values 0, i, 1, $, . . . and m = -j, -j + 1,. . . , j such 
that [14] 

&lWs = mljn), (6% 

j * w q  = (UT m l q b  m + 11,) I P  f I), ' 

S"l;,m), = mI$m), (6.34 

3*IL m)s = ([i T m],  1; f m + 11J 15, m f l), . 

(6.26) 
I f 2  . 

In the case of the spin operators g,, s+, s-, where s = 4, we have 

(6 .3)  112 1 
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The matrix elements are in the form 

and the rest of them are equal to zero. 
Then, in matrix form 

s-'(' " - 2  0 -1 ' )  S + = ( : k )  s - = ( y : ) .  (6.5) 

It is clear, that in the case s = i, the matrix elements of the generators 
(st, gu,s-) in the basis li,m)q are identical to the matrix elements of the 
generators of the S U ( 2 )  algebra (S+,S,,S-) in the usual basis 14,m). This is 
a special case for the SUq(2)  algebra. 

Finally, we would like to note that from the basis vectors Ijlml)qIj2m2)q of 
the direct product 'Dit @ Dfz of two irreducible representations we can obtain linear 
combinations 

I k 2 ;  W q  = ( ~ 1 7 7 % ~ 2 ~ 2 1 ~ ~ ) q  IjPdq l j ,m2) ,  (6.6) 
mlm2 

which are basis vectors of the irreducible representations of this algebra. 

coefficients [14], and we are interested in the particular case when j ,  = e,  j, = ;. 
The coefficients (jlmlj2m21jm)q are the q-analogue of the Clebsch-Gordan 

7. The q-deformation of the Hamiltonian of the nuclear shell model 

The q-deformed Hamiltonian of the nuclear shell model has the form 

(7.1) fi - fl- k { j 2  - E 2 -  3 2 } -  k p L 2  u -  

where fi is the q-number operator (3.1), E, s and j are respectively the q-analogues 
of the orbital, spin and total angular momentum operators, (4.3). (6.2), (6.3). 

In this case, we have the eigenvalues in the following manner: 

(7.2) E = N - k{ [ j  f $1; - [e f - $} - kp{ [e + 4, 1 2  - ?}  1 

where N is again the total number of quanta, e and j are the orbital and the total 
angular momenta respectively and k and p are parameters taken from experimental 
results. We note that for the case s = the eigenvalue of the operator S2 is equal 
to (section 6). 
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8. Spectra of the q-deformed Hamiltonian and recovery of the U(3) symmetry 

As we showed in section 7 the eigenvalues of the q-deformed nuclear shell model 
Hamiltonian are given by (7.2). Then if we choose the value of q in the form q = eir, 
we have 

A Del Sol Mesa et a1 

f i ( N , e , j ) =  N - k { [ j t  4 1 ~ - [ f + 5 1 ~ - ~ ) - k f i { [ e t  51i-a) 

N=4  

5.0 - '  4 2  3 2 
, , , (4 2 5/72) 
- (44  7/2) 
- , (+ 4 O/Z) 4.5 

G E 
Z; 4.0 

3.5 

1 
1 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 
3.0 

1.) 

Flgure 2. We show the energy levels E ( N , I ,  j) of the qdeformed nuclear shell 
model Hamiltonian of (8.1) for N = 4, as function of the parameter r in the interval 
0 < r < 2rr. For r = 0 the energy levels are the same as those of figure 1 when 
N = 4. In the intervals 0.5 < r < 2.0 and 4.0 < r < 5.5, the Iwels, characterized by 
N ,  e ,  j ,  become almmt degenerate. At r = n they go to infinity because sin'r in the 
denominator vanishes. The periodicity of E ( N ,  t ,  j )  with respect to r is 2rr. 

One interesting result is the fact that the symmetry U ( 3 )  is almost recovered 
when we introduce the q-deformation in the nuclear shell model Hamiltonian, when 
we are in the interval of 0.5 Q r Q 2.0 and 4.0 Q 7 Q 5.5 as shown in figures 2 
and 3 where we considered the important shells for medium and heavy nuclei, Le. 
N = 4,s. 

What the figures tell us is that the levels broken by the normal spin-orbit coupling 
and the term Lz,  which are given in figures 2 and 3 when r = 0, become almost 
degenerate in the intervals 0.5 Q r < 2, 4.0 Q Q 5.5. For r = T the levels diverge 
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 

(7) 

FIgvre 3. We show the energy levels E ( N , e , j )  of the qdefomed nuclear shell 
model Hamiltonian of (8.1) for N = 5,  as function of the parameter r in the inteml 
0 < r < 2 ~ .  For r = 0 the energy levels are the Same as those of figure 1 when 
N = 5. In the intervals 0.5 < r < 2.0 and 4.0 < r < 5.5, the levels, characterized by 
N, t ,j ,  become almost degenerate. At r = rr they go to infinity because sin2 r in the 
denominator vanishes. The periodicity of E( N, e ,  j )  with respect to r is 2rr. 

6.0 

5.0 

.+ 4.0 

E 3.0 

2.0 

1.0 

0.0 

3 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 

(7) 

Figure 4. We show the energy levels, of the g-deformed nuclear shell model Hamiltonian 
of (8.1) for N = 0,1,2,3,4,5,  as functions of the parameter r in the intemal 
0 < r < Zr. It has the same characteristics as in figures 2 and 3. 

to infinity because sin2 T in the denominator of (8.1) vanishes. At T = 2a the levels 
return to their original values at T = 0, and from then on the graph is reproduced 
periodically. We also include in figure 4 all the levels up to N = 5 as function of T 

in the interval 0 < T < 2a. 
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The behaviour reported in the previous paragraphs has already been observed by 
0,(2). In our notation they Gupta et al [U] in the much simpler chain Uq(2) 

considered first the ordinary two-dimensional Hamiltonian 

whose eigenvalues are 

E( N ,  m )  = N t km2 (8.3) 

where N is the number of quanta and m = N , N  - 2 , .  . . ,1 or 0. They then 
proceeded to deform it so the eigenvalues become 

k ( N , m )  = N t /c[m]i (8.4) 

following the same type of analysis that takes us from (2.10) to (8.1). In their 
figure I@), they take q = exp(i7) with 0 < T 6 1 and it shows exactly the same type 
of behaviour as our figures 2 and 3, i.e. the levels well separated at 7 = 0 become 
almost degenerate for 7 close to 1. This corroborates our analysis within a much 
simpler, and less physical, example. 

We note also that Gupta et 01 [15] have discussed the case when q is real where the 
separation is enhanced instead of diminished when q increases. This also happens 
in our paper and that is the reason why we do not discuss here the behaviour of 
E = ( ~ , l , j )  of (8.1) for real q. 

9. Conclusion 

The main result of our paper is that in a q-deformed Hamiltonian for the nuclear shell 
model we can almost recover the U ( 3 )  symmetry for some values of the parameter 

The recovery of the U ( 3 )  symmetry can also be achieved by other means. For 
related to the q by q = exp(i7). 

example, Castaiios el a1 1121 proposed applying the operator 

U = Z ( E .  S) ( l , .  - 2 L .  s)-"2 ( 9 4  

to the Hamiltonian of the nuclear shell model given in (2.7), where the symbols are 
defined in section 2. 

The new Hamiltonian of the nuclear shell model is then given by [12] 

fI = U H U t = q . E  t 1 - 2 k ( 2 p  - 1 ) L - S -  k p L 2 - 2 k ( p -  1) (94 

and so if p = 4 the spin-orbit coupling disappears and the energy levels could be 
characterized by the eigenvalues of the Casimiu operators in the chain U ( 3 )  3 O(3) .  

The q-analogue Hamiltonian is then an alternative to the procedure indicated in 
the previous paragraphs, and could possibly be of practical interest in calculations 
of structures of medium and heavy nuclei, in a way similar to what was done by 
Elliott [16] in his analysis of nuclei in the 2sld shell, in which he made use of the 
almost U ( 3 )  symmetry in that shell. 
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