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Abstract. Quantum groups are of current interest because of their applications in many
fields of physics. In the present paper we discuss 2 g-analogue to the Hamiltonian of
the nuclear shell model. If g is written as ¢ = exp(ir) where = is a real number in
the interval 0 € 7 € 2=, then for + = 0 we recover the ordinary nuclear shell theory
Hamiltonian where the U(3) symmetry is broken by the presence of the spin-orbit
coupling term as well as the one depending on L%, On the other hand if r is in the
interval 0.5 £ r £ 2, the levels corresponding to a given number of quanta N almost
collapse to a single one, thus recovering the U/{3) symmetry. In the conclusion we
compare this result with other procedures to re-establish the U(3) symmetry.

1. Intreduction and summary

Quantum algebras have recently been of great interest in physics. The development
of the quantum inverse problem method [1] and the study of solutions to the Yang-—
Baxter equation [2] introduced the notions of quantum groups and algebras.

The growing interest in the quantum groups is related with the similitude of the
properties of quantum algebras and those of Lie algebras in connection with both the
representation theory [3] and the possible physical applications. The quantum algebra
SU,(2), in particular, has been used for the description of superdeformed bands in
even-even nuclei [4], for description of rotational molecular spectra [5], etc.

Recently Biedenharn [6] and Macfarlane [7] independently introduced a g-
analogue of the harmonic osciliator and proposed the g-analogue to the Jordan
Schwinger map.

Moreover the g-analogue of the standard coherent states, and the g-analogue of
the Bargmann representation were studied by various authors [8,9].

In the present paper we shall extend the idea of quantum groups to the
Hamiltonian of the nuclear shell model [10}. The appearance of spin—orbit interaction
and an L? terms in the latter destroys the U/(3) symmetry of the original harmonic
oscillator. We shall show that this U(3) symmetry can be recovered in a g-deformed
version of this Hamiltonian.

We briefly summarize the procedure followed in this paper. In section 2 we discuss
the ordinary U(3) D O(3) D O(2) chain with spin as applied to the Hamiltonian
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NUCLEAR SHELL MODEL WITH SPIN~QRBIT COUPLING AND L* TERM
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Figure 1. We show the energy levels of the nuclear shell model Hamiltonian given
by {2.10). Each level is characterized by the total number of quanta NV, and the orbital
and total angular momenta given respectively by £ and j. Note that the parameters k
and p are functions of IV, and shown on the right-hand side of the figure.

of the nuclear shell model and show in figure 1 how the degeneracy associated with
U(3) is broken.

In section 3 we introduce the g-deformed operators ﬁ,-,f,-, N, as functions of the
ordinary creation and annihilation operators #,, &, given in the previous section.

In section 4 we discuss the chain U,(3) D O,(3) D O,(2) of g-deformed groups,
with their generators determined explicitly in terms of 7,,;, N,.

In section 5 we consider the Casimir operators of U,(3),0,(3),0,(2) and show
how they give rise to the corresponding commuting integrals of motion N, L2, L.

In section 6 we briefly review the g-analogue of total angular momentum 7 and,
in particular, its representation for j = %, ie. for the spin, in terms of ordinary Pauli
matrices.

In section 7 we discuss the g-deformation of the Hamiltonian of the nuclear sheil
model and in section 8 its spectra, showing through figures 2 and 3 how the U(3)
symmetry is recovered for a certain range of the parameter q.

2. The U (3)> O(3)D O(2) chain with spin and the Hamiltonian of the nuclear shell
model

Let us now consider the ordinary U(3) algebra with the generators E;; expressed in
terms of the boson operators n;,§;, ¢ =1,2,3, ie.

E; =n = N; ¢=1,2,3 (2.1a)
Ey; = n:&; i#j =123 (2.16)

where #,,&; and N, satisfy the following commutation relations:

{€;,m;]1 = 6, (2.22)
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[Nin &l = =645 (2.2b)

[Nim] = 6ymy (2.2c)

[N;, Nj] = [m;, T?_,'] = [Eiafj] =0. (2.2d)
Then, we easily obtain

(Eijs Byl = Eyby; — B8y (2.3)

and the total number operator N = Ny + N, + N; = n &, + mé; + m&;s, is a Casimir
operator for this algebra, ie.

[N,E;]=0  i,j=1,23. (2.4)

It is well known that the O(3) algebra is a subalgebra of the I/(3) one, and the
generators of the first one can be defined in the following way:

Ly = —i(ny83 — m33) (2.5a)
Ly = —i(n3€y — my&3) (2.50)
Ly = —i(n1§; — mp81) (2.5¢)

and they satisfy the commutation relations
[Lii L]] =iEz‘jkLk ‘ (2.6)

and of course the operator L? = L? + L% 4 L2 is a Casimir operator. Finally, the
O(2) algebra is a subalgebra of the O(3) that has the generator L, which is also the
Casimir operator of O(2).

Now we are going to talk about the nuclear shell model Hamiltonian, which has
been of great interest in nuclear physics [10,11].

In this model, the nucleons have a common potential of the harmonic oscillator
type plus a single-particle spin-orbit coupling term and a term depending on L?, ie.

H=n-6-2kL -8 - kul? (2.7)
where k and p are parameters taken from the experimental results [10], L and S are

respectively the orbital and the spin angular momenta of the nucleon and L2 = L-L.
As is well known the spin § for the nucleons is given by the Pauli matrices

o, _ 170 1

Sm‘"‘z“'z(l o) (2.8a)
oy _1(0 -

Sy—?-i(i o) (28)
_%_1f1 0

81'2‘2(0 -1) (28¢)
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which satisfy the relations
[aiv"'j]=2i‘5:'jk°'k' (2.9)

The total angular momentum is J = L + §, with the eigenvalues of J*, L2, 5%
being, respectively, j(j + 1),£(2+ 1), 3.
Then, the eigenvalues of the nuclear shell model Hamiltonian have the form

E(N,8,j) = N-k{j(G+1)— L+ 1) -3} ~ kpf(£+1) (2.10)

where N is the total number of Guanta and £ and j are the orbital and the total
angular momentum respectively.

We can see clearly that the spectrum has lost the symmetry U(3), which
corresponds to the harmonic oscﬂlator, as the levels with fixed N and { =
N,N-2,...00rtand j = ¢+ 1 are no longer degenerate as seen in figure 1.

3. The g-operators 7;,£;,N,, in terms of the ordinary creation and annihilation
operators n;, £;

The three-dimensional g-harmonic oscillator can be defined in terms of the g-creation
operator 7;, g-annihilation operator £, = (#;)*, and the g-number operator N,
where (i = 1,2,3), and satisfy the followmg commutation relations [9]:

£;7; — a6y = g~ (3.1a)
£y — ¢ b = v (3.16)
[Niaﬁj] = &;;7; (3.1
[N:. 6] = —6;;¢; (3.1d)
[7;, 55 = [€:, 6] = [V, Nj] = (3.1¢)
(&, 7,] =0 iFJ. (31
From the relations (3.1a, #) we can obtain
&4 =[N, +1], (3.22)
7€ =[N, (3.2b)

where for a given x, we have
g —q~
[}, = P q—l (33)

where ¢ = exp(r) and 7 is a real or purely imaginary number.
The operators N,, 7; and £; act on the g-Hilbert space given by the states [9)

_ fI (7)™ [0}

o= Lp i @4
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where [0}, is the g-boson vacuum defined by

10y, = N;|0), =0 i=1,2,3 (3.54)
and the factorial is
[ns']q! = [ﬂi]q[ni - 1]g v [1]q n; = 0, 15273: v (3'5b)

'The operators act on the basis states in the following manner:

N;|n), = n,ln}, (3.62)
iind, = In; + 1];/2|" +e;), (3.6b)
éii“);. = [n;'];/zi'n - e:')q (3.6¢c)

where n = (n;,n;,n;) and e; is a three-dimensional vector with vanishing entries
everywhere except for the ¢ component that has value unity.

There is a relation between the g-operators Nl,na,!;' and the usual boson
operators 7;,¢; [8]:

) B N, +1 1/2 N;+1 1/2
NizNi=ﬁifiafi=([T+_1]g) fi,ﬁ,-=m([—NT+—1]q) 37
or
) N, +1\'2, ( N.o+1 )”2
S NPSR (E e o RSP I\ 2 S 3.8
N, = N, ¢ = ({N+1]q) Eietty = 7 AT (3:8)

It is easy to show that if we carry out the substitution of the relations (3.8) in the
commutation relations for the usual boson operators

[£ism) =1 (3.9

we obtain the relations (3.1a, b).

4. The U,(3) D 0,(3) D 0,(2) chain in terms of the g-operators 7;, &;, V;

4.1. The generators of the U (3) algebra in terms of the g-operators 1;, £, N

The U,(3) algebra is defined by the generators E;; (i,j = 1,2,3) which can be
expressed in terms of the g-operators ;, §;, N, [9]:

E,=N; i=1,2,3 (4.1a)
Ein =€ 1=1,2 (4.18)
Eppi = N i1=1,2 (4.1¢)
By = q~ Vi (4.14)

By = o™i (4.le)
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Using the relations (3.7) we can express the generators of the U, (3) algebra in
terms of those of the U/(3), Le.

E;=E; =N, =n¢; (4.2a)
Ey = Ey ([(Ai—"'_l_ll?)[(—i\,;-l;])i) qu . (4.2¢)

4.2. The generators of the O,(3) algebra in terms of #;,&;, N,

Let consider the quantum algebra O (3) generated by the operators L, L_, Ly,
where (Ly)t = Ly, (L)t = L_ satisfy the commutation relations

=

02 I:'i] = if’:h
+L ] = [ZE‘O]Q

[

(4.3)
[

e

and the O, (2) algebra has the generator Ly

There is a connection between the generators of the algebra O, (3)(L,, Ly, L)
and the generators of the O(3) algebra (L, Ly, L_) [9,13]

_— L+ Lo+ 1],{L - L, \ /2

L= 5 (T BT e

. [IL+ Ly+ 1], 1L - L], \ '

L= (Gt - (440)

Ly= L, (4.4c)
where

L=(L*+H2-1, (4.4d)

Carrying out the substitution of the relations (4.4a, b, c) in the commutation
relations for the O(3) generators

[Lo Lo} =£L, (4.52)
[L,,L_]=2L, (4.55)
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we obtain the relations (4.3).
As is well known, the generators L, L_, L; can be expressed in terms of the
boson operators 7, &; (i =1,2,3)

L,B8 (L +iL;) = =i{n,{5 — n3&; + inz&y — im &3} (4.6a)
L_a (L —iL,) = —i{m&; — m€; ~ ins) + im&s) (4.66)
Lya Ly = —i{m& — méi}. (4.6¢c)

On the other hand we know the relation between the operators #,,£;, N, and
n,f,,N (equations 3.8) and the relation of the generators L, Ly, L_ with those
L,,L,, L_ (equations (4.4a—)).
Thus we can express the generators of the O, (3) algebra (L, , Ly, L_) in terms
of the g-boson operators &;,;, N; (i =1,2,3):

z‘+ = (""i){ﬁzésG( NZ’ N’a’) — ﬁBEZG( NS’ NZ) + iﬁ3£lG( N3’ Nl)

— 17} £3G( Ny, N3)} f( Ly, L) (4.7a)
L_=(L) (4.7b)
Ly= Ly= —1{"71'52G(ﬁ1a Nz) Wz‘flG(Nza N1)} (4.7¢)
where

o (W D)\
o A N S EA S £

G(N;, N)—([N-[-I] [N]q) (4.7d)

and
(L4 Ly + 1, [L = Ly] \ 2
s )= (T 1)) 7%

Note from (4.4d) and (2.5) that L and Lu can be expressed in terms of 7;,£;.
As these in turn are functions of #;,¢;, N;, as seen in _(3.8), we can finally obtain
F(L,Ly) of (4.7) in terms of the Iatter. 'I‘hus L,,L, are explicit functions of

ﬁi 1 Ei: N i
5. The Casimir operator of U,(3), O,(3) and O,(2) algebras and the integrals of
motion

In connection with the chain U,(3) 3 O,(3) > O,(2) we can find three commuting
integrals of motion

1

Ezzag—_—i £++[EU+§—,]§-§ (5.1b)
Ly=1L, (3.1¢)
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The total number of quanta operator N is a Casimir of the U, (3) algebra, ie.
[N, B l=0 i,j=1,2,3 (5.2)

and the operators L? and L, are Casimirs of the O,(3) and O,(2) algebras
respectively, i.e.

(L%, L) =0 (5.32)

[E%, Ly] =0. (5.3b)

All these operators commute each other. We can clearly see that [N, LU] =0,

which is easy to show because we know that N = N from (3.72) and L, = L,
from (4.4c), so then we have

[N, Lg) =[N, Ly] = 0. (5.4)
It is also clear that [L, L2] = 0 because L? is a Casimir operator of the O,(3)

algebra, o
To prove the relation [V, L?] = 0, it is useful to note that

G FN i FOF Ol [L+ Lo+ 1], (L - L, \] _
[N,Lz]—[N,L_L+]_-[N,L_L+((L+LD+1)(L_LU;)]_-0 (5.5)

where in (5.5) we used the relations (3.7) and (4.4a, b).

6. The discussion of the spin part and the states for the total angular momentum

Let us consider now the quantum algebra SU, (2) generated by the operators
J.,Jy, J_ satisfying the relations

[Jor Jz] = £J (6.1a)
W =120, (6.16)
The irreducible representations are given by the vectors of the Hilbert space

Ijm)[q, 1]Nhere j may take the values 0,1,1,2,...and m = —j5,~j 4+ 1,...,7 such
that [14

Jolim), = mlim), (6.2a)

Julimy, = (i Fmllizm+ 1) limz1),. (6.2b)
In the case of the spin operators 5,, 5, , 5_, where s = 1, we have

Sl3m), = mli,m), (6.3a)

Sulhmy, = ([3Fm] [2m+1]) " [Lmz1),. (6.3b)
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The matrix elements are in the form

(3-3%l3 -1, = -1 (6.40)
(331533, =% (6.40)
(h-315_159), =1 (64¢)
(3:315,0%,-1), =1 (6.4d)

and the rest of them are equal to zero.
Then, in matrix form

. _1/1 0 5 01 - 00
S{,=5(0 _1) s+=(0 0) .9_:(1 0). (6.5)

It is clear, that in the case s = %, the matrix elements of the generators
(8,,8,,5.) in the basis |3,m), are identical to the matrix elements of the
generators of the SU(2) algebra (S, S,,S_) in the usval basis |3, m). This is

a special case for the SU,(2) algebra.
Finally, we would like to note that from the basis vectors |j;m,),|jym;,), of

the direct product Dt ® D% of two irreducible representations we can obtain linear
combinations

|j1j2;jm)q = Z (j1m1jzmz”m>g[j1m1)q|jzmz)q (6.6)

mima

which are basis vectors of the irreducible representations of this algebra.
The coefficients (jym,j,my|jm}, are the g-analogue of the Clebsch-Gordan

cocflicients [14], and we are interested in the particular case when j, = ¢, j, = %

7. The g-deformation of the Hamiltonian of the nuclear shell model

The ¢-deformed Hamiltonian of the nuclear shell model has the form
Hy=N-k{JF-L?- 8§}~ kpI? (7.1)

where NV is the g-number operator (3.1), L, § and J are respectively the g-analogues

of the orbital, spin and total angular momentum operators, (4.3), (6.2), (6.3).
In this case, we have the eigenvalues in the following manner:

E=N-k{lj+3], - [e+4l, -3 -rulle+ 3-8 02

where N is again the total number of quanta, £ and j are the orbital and the total
angular momenta respectively and k and u are parameters taken from experimental
results. We note that for the case s = 1 the eigenvalue of the operator S? is equal

to 2 {section 6),
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8, Specira of the g-deformed Hamiltonian and recovery of the U/(3) symmetry

As we showed in section 7 the eigenvalues of the g-deformed nuclear shell model
Hamiltonian are given by (7.2). Then if we choose the value of ¢ in the form ¢ = ¢",
we have

B(N,6,5)=N-k{[j + P -1+ 3P -2} - ku{{e+ 12 - 1}
2 2 .
_ N_k{sm GG+ %T_sm2(£+%)1'_§}

- sin? r sin® 7 4
s 2 1
sin“(£+ 3)T 1}
—hpud ———2— —_ 5, 8.1
,u{ sin® 4 ©5
N=4
©£=0.0837 p=0.6 (M1}

—(40 1/2)
—-(42 3/2)
(42 5/7)
(44 7/8)
— {4 9/2)

5.0+

4.5+

4.0

ENERGY

3.9 4

3.0 + + t } + t t t 1 t + s
00 05 1.0 1.5 20 25 3.0 35 40 45 50 55 6.0

()

Figure 2. We show the energy levels E(N, ¢, j) of the g-deformed nuclear shell
model Hamiltonian of (8.1) for N = 4, as function of the parameter = in the interval
0 g v g 2n. For r = 0 the energy levels are the same as those of figure 1 when
N = 4. In the intervals 0.5 € 7 £ 2.0 and 4.0 £ r < 5.5, the levels, characterized by
N, &, j, become almost degenerate. At r = = they go to infinity because sin® 7 in the
denominator vanishes. The periodicity of E(N, £, 7) with respect to 7 is 2.

One interesting result is the fact that the symmetry U(3) is almost recovered
when we introduce the g-deformation in the nuclear shell model Hamiltonian, when
we are in the interval of 0.5 € 7 £ 2.0 and 4.0 £ v € 5.5 as shown in figures 2
and 3 where we considered the important shells for medium and heavy nuclei, ie.
N =4,5.

What the figures tell us is that the levels broken by the normal spin-orbit coupling
and the term L2, which are given in figures 2 and 3 when = = 0, become almost
degenerate in the intervals 0.5 € 7 € 2, 4.0 < 7 £ 5.5, For 7 = = the levels diverge
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N=3§
©=0.0577 p—0.65

ENERGY

3.5 : prarme e o o o e o]
0.0 05 10 15 20 25 30 35 4.0 45 5.0 55 8.0

(7)

Figare 3. We show the energy levels E(N, £, 5} of the g-deformed nuclear shell
model Hamiltonian of (8.1) for N = 5, as function of the parameter r in the interval
0 r £ 2r. For 7 = 0 the energy levels are the same as those of figure 1 when
N = 5. In the intervals 0.5 £ r £ 2.0 and 4.0 £ 7 £ 5.5, the levels, characlerized by
N, £, j, become almost degenerate. At r = m they go to infinity because sin®  in the

denominator vanishes. The periodicity of E(N, £, ) with respect to 7 is 2.

6.0

5.0

4.0

ENERGY

3.0 1

2.0

1.0+

0.0 } t t ; + } } } } 3 + t
00 05 10 1.5 2.0 25 3.0 35 40 45 50 55 6.0

()

Figure 4. We show the energy levels, of the g-deformed nuclear shell model Hamiltonian
of (81) for N = 0,1,2,3,4,5, as functions of the parameter v in the interval
0< 7€ 2m. It has the same characteristics as in figures 2 and 3,

to infinity because sin® 7 in the denominator of (8.1) vanishes. At T = 2x the levels

return to their original values at = 0, and from then on the graph is reproduced
periodically. We also include in figure 4 all the levels up to N = 5 as functon of r
in the interval 0 € T € 27,
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The behaviour reported in the previous paragraphs has already been observed by

Gupta et &/ [15] in the much simpler chain U (2} D O,(2). In our notation they
considered first the ordinary two-dimensional Hamiltonian

H = (m& + m6y) + kM?

(82)
M =mé&; + mé

whose eigenvalues are
E(N,m)= N+ km? (8.3)

where N is the number of quanta and m = N,N —2,...,1 or 0. They then
proceeded to deform it so the eigenvalues become

E(N,m) = N + k[m]? (8.4)

following the same type of analysis that takes uws from (2.10) to (8.1). In their
figure 1(b), they take ¢ = exp(ir) with 0 < 7 < 1 and it shows exactly the same type
of behaviour as our figures 2 and 3, i.e. the levels well separated at + = 0 become
almost degenerate for = close to 1. This corroborates our analysis within a much
simpler, and less physical, example.

We note also that Gupta er af [15] have discussed the case when ¢ is real where the
separation is enhanced instead of diminished when ¢ increases. This also happens
in our paper and that is the reason why we do not discuss here the behaviour of
E = (N,1,§) of (8.1) for real q.

9. Conclusion

The main result of our paper is that in a g-deformed Hamiltonian for the nuclear shell
model we can almost recover the U(3) symmetry for some values of the parameter
T related to the g by q = exp(ir).

The recovery of the U(3) symmetry can also be achieved by other means. For
example, Castafios et a/ [12] proposed appiying the operator

U=2(&-8)n-£-2L.8)"\/? (9.1)

to the Hamiltonian of the nuclear shell model given in (2.7), where the symbols are
defined in section 2.
The new Hamiltonian of the nuclear shell model is then given by [12]

H=UHU"=n-¢+1-2k(2u—1)L-S—kpl? =2k(p~-1) (92)

and so if 4 = % the spin-orbit coupling disappears and the energy levels could be
characterized by the eigenvalues of the Casimir operators in the chain U(3) D O(3).

The g-analogue Hamiltonian is then an alternative to the procedure indicated in
the previous paragraphs, and could possibly be of practical interest in calculations
of structures of medium and heavy nuclei, in a way similar to what was done by
Elliott [16] in his analysis of nuclei in the 2sld shell, in which he made use of the
almost U/(3) symmetry in that shell.



Quantum groups nuclear shell model 1159

References
[1} Faddeev L I» 1984 Integrable Models in (I1-+1)-dimensional Quantum Field Theory (Les Houches
Lectures 1982} (Amsterdam: Elsevier) p 563
[2] Kulish P P and Sklyanin E K 1981 Lecture Notes in Physics vol 151 (Berlin: Springer) p 61
[3] Jimbo M 1989 Int J. Mod. Phys. 4 3759
[4}] Bonatsos D, Drenska S B, Raychev P P, Roussev R P and Smimov Yu F 1991 Description of
superdeformed bands by the quantum algebra SU,(2) L Phys. Gr Nucl Phys 17 L67-L73
[5] Bonatsos D, Raychev P P, Roussev R P and Smimov Yu F 1990 Descriptior of rotational moiecular
spectra by the quantum algebra SU,(2) Chem. Phys. Ler. 175 300
[6] Biedenham L C 1989 J Phys. A: Math, Gen. 22 1873
[l Macfarlane A J 1989 J Phys. A: Math. Gen. 22 4581
[8] Kufish P P and Damaskinsky E V 1990 L Phys. A: Math. Gen. 13 1415
[9] Quesne C 1991 Complementarity of SU4(3) and Ug(2) and g-boson realization of the SU,4(3)
irreducible representations Preprint Physique 229 Université Libre de Bruxelles
[10] Nilsson 8 G 1955 Math. Fys. Medd K Dan. Vidensk. Selsk. 29 (16); Ring P and Shuck P 1980 The
Nuclear Many-body Problem (Berlin: Springer) p 76
[11) Draayer J P and Weeks K J 1984 Ann. Phys.-NY 156 41
[12] Castafios O, Moshinsky M and Quesne C 1991 Transformations from U(3) to pseudo U(3)} basis
Proc. Int. Symp. on Group Theory and Special Symmetries in Nuclear Physics (Ann Arbor 1991)
(Alsc 1992 Phys, Lere 2778 238)
[13] Curtright T L and Zachos C K 1990 Phys. Lew 243B 237
[14] Kharitonov Yu I, Smirnov Yu F and Tolstoy V N 1990 Method of the projection operators and

(15]
[16]

g-analogue of the quantum angular momentum theory (Leningrad Institute of Nuclear Physics
preprint No 1607
Gupta R K, Cseh J, Ludu A, Greiner W and Scheid W 1992 1 Phys. G: Nucl Phys. 18 L73
Elliott T P 1958 Proc. R. Soc. A 245 128, 562



